

Analyse factorielle Analyse (factorielle) des Correspondances

IUT de Vannes - Université de Bretagne-Sud

Thierry Dhorne - www.dhorne.education

9 octobre 2015

Introduction

- Lien entre deux qualitatives binaires
- Lien entre qualitatives quelconques

Étude du lien

Exemple

Aide à l'interprétation

Introduction

Étude du lien entre deux variables qualitatives binaires

Introduction

- Lien entre deux qualitatives binaires
- Lien entre qualitatives quelconques

Étude du lien

Exemple

Aide à l'interprétation

• lorsque les deux variables qualitatives ont deux modalités chacune les coefficients de corrélation entre deux quelconques des indicatrices disjonctives sont égaux (au signe près)

$$cor^{2}(X_{11}, X_{21}) = cor^{2}(X_{11}, X_{22}) = cor^{2}(X_{12}, X_{21}) = cor^{2}(X_{12}, X_{22})$$

- > en effet on inverse simplement les 0 et les 1
- > ces coefficients sont par ailleurs égaux au $\phi^2 = \frac{\chi^2}{n}$ d'indépendance sur la table de contingence associée
- \bigstar la mesure du lien du χ^2 est donc la mesure du lien linéaire classique
- ➤ le lien linéaire classique ne s'étend cependant pas immédiatement au cas multidimensionnel
- \blacktriangleright le χ^2 est, en revanche, général

Étude du lien entre variables qualitatives quelconques

Introduction

- ❖ Lien entre deux qualitatives binaires
- ❖ Lien entre qualitatives quelconques

Étude du lien

Exemple

Aide à l'interprétation

- dans ce cas le lien entre deux variables qualitatives est « multidimensionnel »
- > plus précisément le lien peut s'apprécier dans un espace de dimension

$$\min(I-1, J-1)$$

où I et J sont les nombres de modalités respectifs des deux variables

- une mesure globale possible du lien entre les deux variables est le χ^2 qui peut être normalisé en le divisant par le nombre d'observations ce qui conduit au ϕ^2
- ★ on peut par ailleurs prolonger la normalisation en le divisant par $\min(I-1, J-1)$ ce qui conduit au coefficient de Cramér.
- il peut donc être judicieux d'étudier le lien de manière moins globale en le décomposant dans l'espace de ce lien

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- ❖ Structuration du lien
- Corrélation
- Matrices concernées
- **❖** Maximisation
- ❖ Résolution

Exemple

Aide à l'interprétation

Étude du lien

Analyse factorielle du lien entre deux variables qualitatives

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- ❖ Structuration du lien
- **♦** Corrélation
- Matrices concernées
- **❖** Maximisation
- ❖ Résolution

Exemple

Aide à l'interprétation

on dispose du tableau disjonctif des deux variables qualitatives

	Variable 1				Variable2			
	mod1	mod2	• • •	modI	mod1	mod2	• • •	mod J
$\overline{i_1}$	I(111)	I(112)	•••	I(11I)	I(121)	I(122)	•••	I(12J)
i_2	I(211)	I(212)	• • •	I(21I)	I(221)	I(222)	•••	I(22J)
	:	:	:	:	:	:	:	:
i_r	I(r11)	I(r12)	• • •	I(r1I)	I(r21)	I(r22)	•••	I(r2J)
	:		:	:	:		:	:
i_n	I(n11)	I(n12)	•••	I(n1I)	I(n21)	I(n22)	•••	I(n2J)

où

- -I(rvk) = 1 si le rième individu a la modalité k de la variable v
- -I(rvk) = 0 sinon

Structuration du lien entre variables qualitatives

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- ❖ Structuration du lien
- Corrélation
- Matrices concernées
- ❖ Maximisation
- ❖ Résolution

Exemple

Aide à l'interprétation

- au lieu de considérer le lien global (mesuré par le χ^2)
- on va chercher s'il existe une combinaison (linéaire) des modalités de la première variable très liée à une combinaison (linéaire) des modalités de la deuxième
- on cherche les deux combinaisons les plus liées
- \triangleright ces combinaisons sont $X_1\alpha$ et $X_2\beta$ (cf td)
- on maximise la corrélation entre ces deux combinaisons

$$\frac{{}^{\mathsf{t}}(X_{1}\alpha)X_{2}\beta}{\sqrt{{}^{\mathsf{t}}(X_{1}\alpha)X_{1}\alpha}\sqrt{{}^{\mathsf{t}}(X_{2}\beta)X_{2}\beta}}$$

Calcul de la corrélation au carré

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- Structuration du lien

Corrélation

- Matrices concernées
- **❖** Maximisation
- ❖ Résolution

Exemple

Aide à l'interprétation

- la corrélation pouvant être négative, on considère son carré pour être dans un cadre strict de maximisation
- ceci a aussi l'avantage de supprimer les
- on doit donc maximiser

$$\frac{{}^{t}\alpha({}^{t}X_{1}X_{2})\beta^{t}\beta({}^{t}X_{2}X_{1})\alpha}{({}^{t}\alpha({}^{t}X_{1}X_{1})\alpha)({}^{t}\beta({}^{t}X_{2}X_{2})\beta)} = \frac{{}^{t}\alpha V_{12}\beta^{t}\beta V_{21}\alpha}{({}^{t}\alpha V_{11}\alpha)({}^{t}\beta V_{22}\beta)}$$

ou, ce qui est équivalent

$$\frac{{}^{t}\beta({}^{t}X_{2}X_{1})\alpha^{t}\alpha({}^{t}X_{1}X_{2})\beta}{({}^{t}\alpha({}^{t}X_{1}X_{1})\alpha)({}^{t}\beta({}^{t}X_{2}X_{2})\beta)} = \frac{{}^{t}\beta V_{21}\alpha^{t}\alpha V_{12}\beta}{({}^{t}\alpha V_{11}\alpha)({}^{t}\beta V_{22}\beta)}$$

Matrices concernées

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- Structuration du lien
- Corrélation
- Matrices concernées
- ❖ Maximisation
- ❖ Résolution

Exemple

Aide à l'interprétation

- le tableau de Burt est
- \rightarrow ^{t}XX ,
- on a
- $V_{11} = {}^{\mathsf{t}}X_1X_1$,
- > premier bloc diagonal du tableau de Burt
- $V_{22} = {}^{t}X_2X_2$,
- deuxième bloc diagonal du tableau de Burt
- $V_{12} = {}^{t}X_1X_2$
- bloc extra-diagonal supérieur du tableau de Burt (ou table de contingence)
- $V_{21} = {}^{\mathsf{t}}X_2X_1$
- bloc extra-diagonal inférieur du tableau de Burt (transposée de la table de contingence).

Maximisation

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- ❖ Structuration du lien
- Corrélation
- Matrices concernées

❖ Maximisation

❖ Résolution

Exemple

Aide à l'interprétation

ullet en dérivant par rapport à lpha et en annulant, on obtient

$$\frac{1}{{}^{t}\beta V_{22}\beta} \frac{2^{t}\alpha V_{11}\alpha V_{12}\beta^{t}\beta V_{21}\alpha - 2^{t}\alpha V_{12}\beta^{t}\beta V_{21}\alpha V_{11}\alpha}{({}^{t}\alpha V_{11}\alpha)^{2}} = 0$$

> soit:

$$V_{12}\beta = k_1 V_{11}\alpha$$

 \succ et donc symétriquement en β :

$$V_{21}\alpha = k_2 V_{22}\beta$$

Résolution

Introduction

Étude du lien

- ❖ Analyse factorielle du lien
- Structuration du lien
- Corrélation
- Matrices concernées
- ❖ Maximisation

❖ Résolution

Exemple

Aide à l'interprétation

la première équation donne

$$V_{11}^{-1}V_{12}\beta = k_1\alpha$$

la seconde donne

$$V_{22}^{-1}V_{21}\alpha = k_2\beta$$

en remplaçant la deuxième dans la première on a

$$V_{11}^{-1}V_{12}V_{22}^{-1}V_{21}\alpha = k_1k_2\alpha$$

> et symétriquement

$$V_{22}^{-1}V_{21}V_{11}^{-1}V_{12}\beta = k_1k_2\beta$$

 \star α et β sont donc vecteurs propres des matrices concernées et correspondent aux mêmes valeurs propres

Introduction

Étude du lien

Exemple

- ❖ Présidentielles 2012
- ❖ Valeurs propres
- **♦** Éboulis
- \clubsuit Lien avec le ϕ^2
- ❖ Dimensionnalité
- Application

Aide à l'interprétation

Exemple

Exemple Présidentielles 2012

Introduction

Étude du lien

Exemple

- ❖ Présidentielles 2012
- ❖ Valeurs propres
- ♦ Éboulis
- **\Leftrightarrow** Lien avec le ϕ^2
- ❖ Dimensionnalité
- Application

Aide à l'interprétation

- on dispose du tableau des résultats du premier tour des élections présidentielles 2012, par région
- on ne travaille que sur le tableau de contingence
- ➤ il y a 27 lignes : les régions (21 métro + Corse + DOM)
- ➤ il y a 12 colonnes : les 10 candidats + abstentions + blancs et nuls
- le tableau a l'allure suivante

	abstentions	blancs-nuls	Eva JOLY	Marine LE PH	ΞN
Alsace	258270	19648	27168	21925	52
Aquitaine	397170	37299	45051	29615	51
Auvergne	164438	19250	15356	13976	86
Basse-Normandie	181511	15958	17279	15083	10
Bourgogne	216817	19159	17077	19114	48
Bretagne	364724	36077	58396	26209	95
Centre	326560	28827	26314	28009	96
Champagne-Ardenne	185831	13154	10150	17263	32
Corse	56696	2921	3678	3920	09
Franche-Comté	141504	14512	14369	14197	72
Guadeloupe	141585	11364	2134	748	36
Guyane	37706	1756	843	392	20
Haute-Normandie	244564	19555	16900	20753	20

Présidentielles 2012 Valeurs propres

Introduction

Étude du lien

Exemple

Présidentielles 2012

❖ Valeurs propres

- ♦ Éboulis
- Lien avec le ϕ^2
- ❖ Dimensionnalité
- Application

Aide à l'interprétation > round(acc1(tabpres)\$valp,4)

[1] 0.0186 0.0111 0.0045 0.0019 0.0004 0.0003

0.0003 0.0001 0.0000 0.0000 0.0000

> round(acc1(tabpres)\$valp/sum(acc1(tabpres)\$valp),2)

[1] 0.50 0.30 0.12 0.05 0.01 0.01 0.01 0.00 0.00

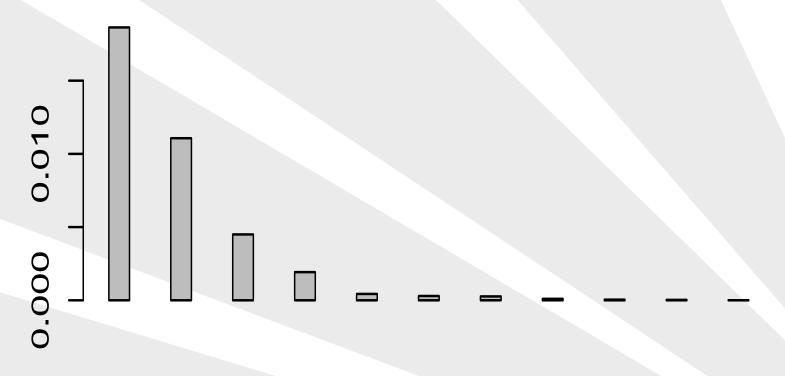
[10] 0.00 0.00

>

Présidentielles 2012 Éboulis des valeurs propres

Introduction

Étude du lien


Exemple

- ❖ Présidentielles 2012
- ❖ Valeurs propres

♦ Éboulis

- **\bigstar** Lien avec le ϕ^2
- ❖ Dimensionnalité
- Application

Aide à l'interprétation

- il y aura au maximum 4 valeurs propres à retenir
- ➤ au lieu des 11 dimensions initiales

Lien avec le ϕ^2

Introduction

Étude du lien

Exemple

- Présidentielles 2012
- ❖ Valeurs propres
- **♦** Éboulis
- ***** Lien avec le ϕ^{2}
- ❖ Dimensionnalité
- Application

Aide à l'interprétation

• il est facile de montrer le résultat suivant

ϕ^2 d'association et valeurs propres

Le ϕ^2 d'association $(=\frac{\chi^2}{n})$ est égal à la somme des valeurs propres (non triviales) de l'analyse factorielle des correspondances

soit

$$\sum_{d=1}^{D} \lambda_d = \frac{\chi^2}{n}$$

ightharpoonup où D est la dimension de l'espace de lien ou coefficient de Cramér : $\min(I-1,J-1)$

Valeurs propres

Test de dimensionnalité

Introduction

Étude du lien

Exemple

- Présidentielles 2012
- Valeurs propres
- ♦ Éboulis
- Lien avec le ϕ^2

❖ Dimensionnalité

Application

Aide à l'interprétation

- les valeurs propres mesurant le lien comme un χ^2
- on peut les utiliser pour tester la dimension de l'espace de lien
- Malinvaud a montré que

Test de dimensionnalité de l'AFC

$$n(\lambda_{k+1} + \lambda_{k+2} + \ldots + \lambda_D) \rightsquigarrow \chi^2_{(I-1-k)(I-1-k)}$$

Test de dimensionnalité

Application aux Présidentielles

Introduction

Étude du lien

Exemple

- ❖ Présidentielles 2012
- ❖ Valeurs propres
- ♦ Éboulis
- Lien avec le ϕ^2
- ❖ Dimensionnalité

Application

Aide à l'interprétation

si l'on réalise les tests successivement

```
> for (k in 10:1)
```

```
+ print(c(k,sum(tabpres)*sum(valp[(k+1):11]),qchisq(0.98
```

```
10.00000 133.78890 27.58711
Γ11
\lceil 1 \rceil
      9.00000 1471.67787 50.99846
[1]
      8.00000 3433.91502 75.62375
[1]
      7.0000 7982.7375 101.8795
[1]
    6.000 19800.757 129.918
     5.0000 33001.2613 159.8135
[1]
[1]
       4.0000 52356.0550 191.6084
        3.0000 138203.9306
[1]
                               225.3288
[1]
        2.0000 338753.4872 260.9921
\lceil 1 \rceil
        1.0000 832389.9208
                              298.6106
```

on s'aperçoit que l'on devrait garder (et donc étudier!!) toutes les dimensions

Introduction

Étude du lien

Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- ❖ Vecteurs propres lignes
- Interprétation
- ❖ Sans outremer
- ❖ 2ème composante
- **❖** Graphique
- Vecteurs propres lignes
- **❖** Graphique
- Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

centrée sur le cœur du nuage

Aide à l'interprétation

Vecteurs propres

Espace des colonnes

Introduction

Étude du lien

Exemple

Aide à l'interprétation

- ❖ Vecteurs propres colonnes
- Graphique
- ❖ Vecteurs propres lignes
- Interprétation
- ❖ Sans outremer
- ❖ 2ème composante
- Graphique
- Vecteurs propres lignes
- Graphique
- Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

- ★ les vecteurs propres donnent les coefficients des combinaisons linéaires
- pour les colonnes (les votes), on a comme premier vecteur propre
- > round(1000*vecpc[,1],4)

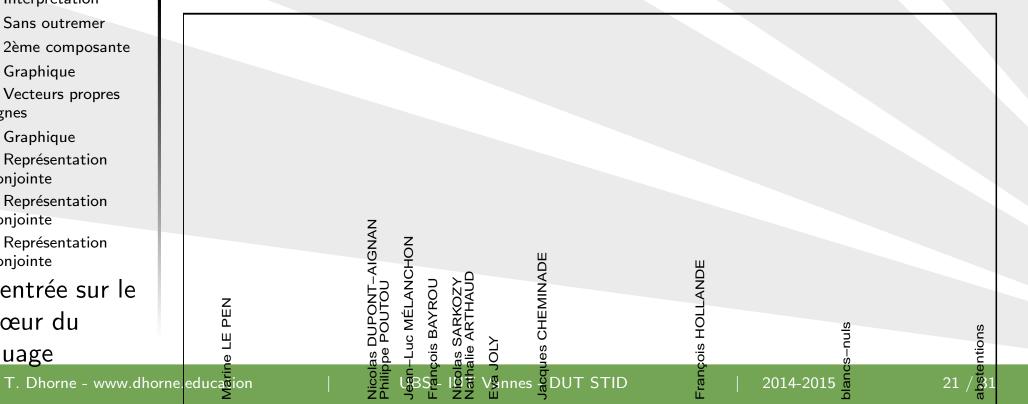
abstentions	blancs-nuls
0.033	0.022
Eva JOLY	Marine LE PEN
-0.007	-0.029
Nicolas SARKOZY	Jean-Luc MÉLANCHON
-0.010	-0.014
Philippe POUTOU	Nathalie ARTHAUD
-0.016	-0.009
Jacques CHEMINADE	François BAYROU
-0.003	-0.012
Nicolas DUPONT-AIGNAN	François HOLLANDE
-0.017	0.010

Interprétation des combinaisons linéaires Graphique

Introduction

Étude du lien

Exemple


Aide à l'interprétation

Vecteurs propres colonnes

❖ Graphique

- ❖ Vecteurs propres lignes
- Interprétation
- ❖ Sans outremer
- ❖ 2ème composante
- **❖** Graphique
- Vecteurs propres lignes
- **❖** Graphique
- Représentation conjointe
- Représentation conjointe
- **❖** Représentation conjointe

- > par(mai=c(1,0,0.75,0.4),oma=c(0,0,0,0))
- > plot(range(vecpc[,1]),c(0,0.6),type="n",yaxt="n",ylab=
- > text(vecpc[,1],0,colnames(tabpres),cex=0.5,pos=4,srt=9

Vecteurs propres

Espace des lignes

Introduction

Étude du lien

Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- ❖ Graphique
- ❖ Vecteurs propres lignes
- Interprétation
- ❖ Sans outremer
- ❖ 2ème composante
- **❖** Graphique
- Vecteurs propres lignes
- ❖ Graphique
- Représentation conjointe
- Représentation conjointe
- Représentation conjointe

centrée sur le cœur du nuage

pour les lignes (les régions), on a comme premier vecteur propre

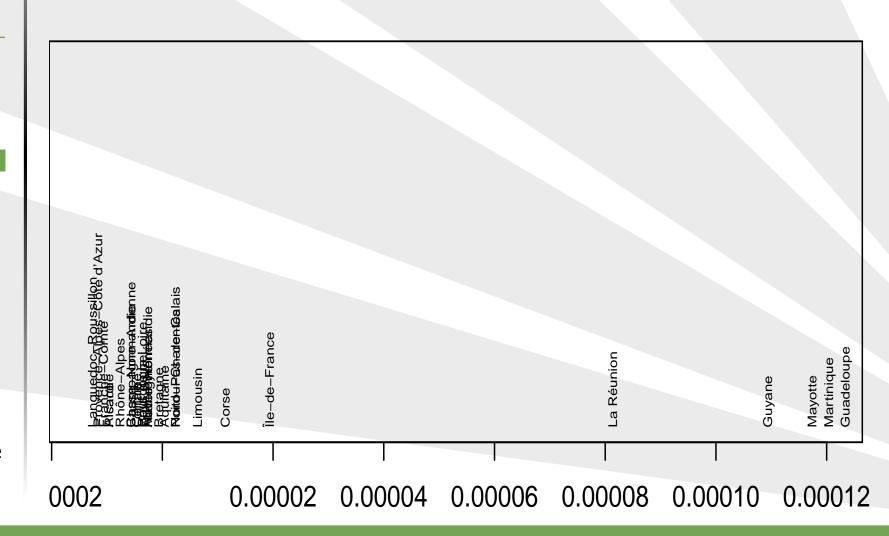
> round(1000*vecpl[,1],5)

Auv	Aquitaine	Alsace
_	-0.002	-0.012
Bre	Bourgogne	Basse-Normandie
_	-0.006	-0.008
	Champagne-Ardenne	Centre
	-0.008	-0.007
G	Guadeloupe	Franche-Comté
	0.121	-0.013
La Ré	Île-de-France	Haute-Normandie
	0.017	-0.005
Lor	Limousin	Languedoc-Roussillon
-	0.004	-0.015
Midi-Pyr	Mayotte	Martinique
<u>-</u>	0.115	0.118
Pic	Pays de la Loire	Nord-Pas-de-Calais
_	-0.006	0.000
Rhône-	Provence-Alpes-Côte d'Azur	Poitou-Charentes
_	-0.014	0.000

Interprétation des combinaisons linéaires Graphique

Introduction

Étude du lien


Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- ❖ Vecteurs propres lignes

❖ Interprétation

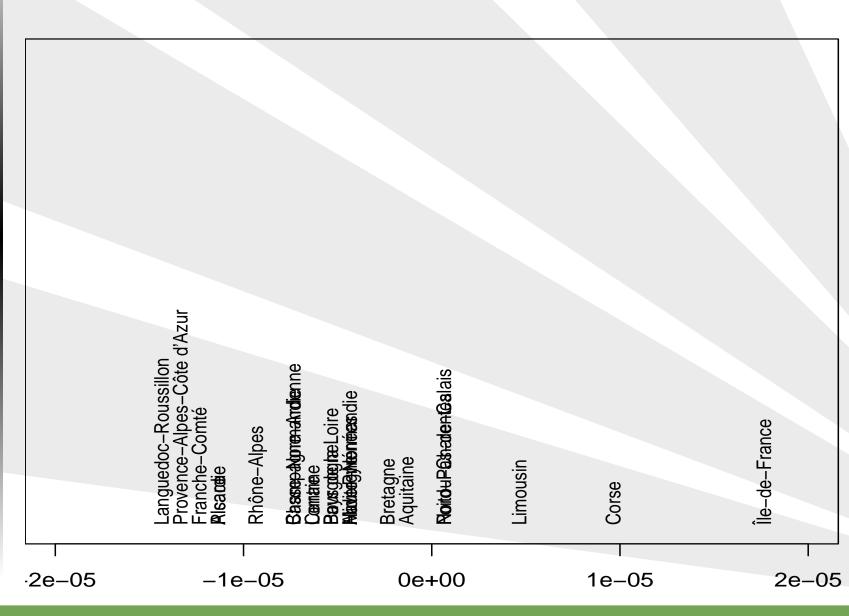
- Sans outremer
- ❖ 2ème composante
- Graphique
- Vecteurs propres lignes
- Graphique
- ❖ Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

Interprétation des combinaisons linéaires

sans les régions ultramarines

Introduction

Étude du lien


Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- Vecteurs propres lignes
- Interprétation

❖ Sans outremer

- ❖ 2ème composante
- Graphique
- Vecteurs propres lignes
- **❖** Graphique
- ❖ Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

On peut évidemment faire la même chose....

Avec la deuxième composante

Introduction

Étude du lien

Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- Vecteurs propres lignes
- Interprétation
- ♦ Sans outremer

❖ 2ème composante

- **❖** Graphique
- Vecteurs propres lignes
- Graphique
- Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

centrée sur le cœur du nuage

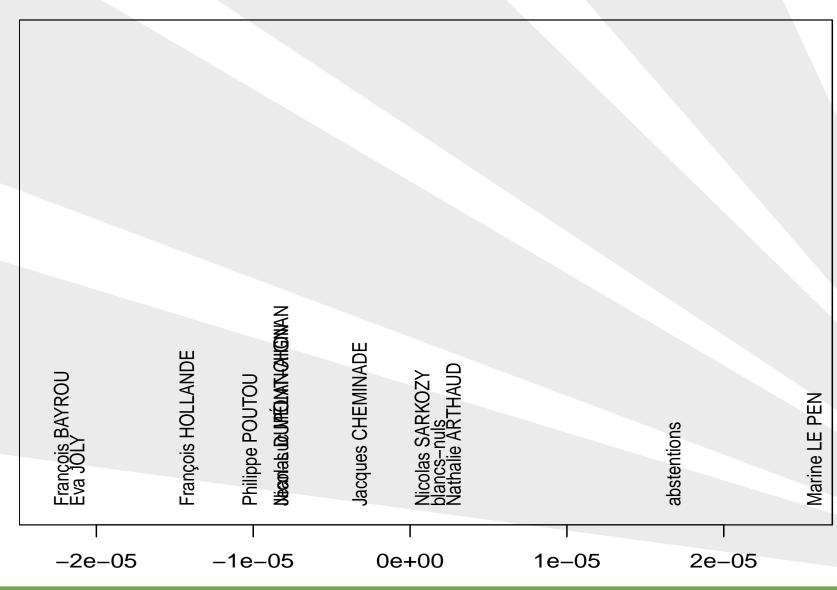
résultats

blancs-nuls abstentions 0.016 0.001 Eva JOLY Marine LE PEN -0.0220.025 Jean-Luc MÉLANCHON Nicolas SARKOZY 0.000 -0.009Philippe POUTOU Nathalie ARTHAUD -0.0110.002 Jacques CHEMINADE François BAYROU -0.004-0.023François HOLLANDE Nicolas DUPONT-AIGNAN -0.009-0.015

Interprétation des combinaisons linéaires Graphique

Introduction Étude du lien Exemple

- l'interprétation


 Vecteurs propres
 colonnes
- ❖ Graphique

Aide à

- Vecteurs propres lignes
- Interprétation
- Sans outremer
- ❖ 2ème composante

❖ Graphique

- Vecteurs propres lignes
- **❖** Graphique
- ❖ Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

Vecteurs propres

Espace des lignes

Introduction

Étude du lien

Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- ❖ Vecteurs propres lignes
- Interprétation
- ❖ Sans outremer
- ❖ 2ème composante
- Graphique
- ❖ Vecteurs propres lignes
- Graphique
- ❖ Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

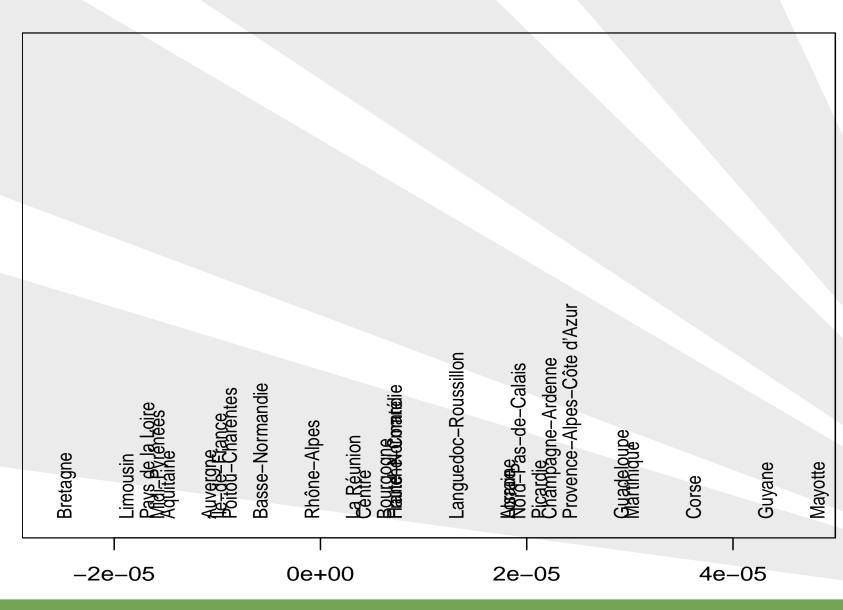
centrée sur le cœur du nuage pour les lignes (les régions), on a comme premier vecteur propre

A	A ann - +	A7
Auvergne	-	Alsace
-0.012	-0.016	0.017
Bretagne	Bourgogne	Basse-Normandie
-0.026	0.005	-0.007
Corse	Champagne-Ardenne	Centre
0.035	0.021	0.003
Guyane	Guadeloupe	Franche-Comté
0.042	0.028	0.006
La Réunion	Île-de-France	Haute-Normandie
0.002	-0.011	0.006
Lorraine	Limousin	Languedoc-Roussillon
0.017	-0.020	0.012
Midi-Pyrénées	Mayotte	Martinique
-0.017	0.047	0.029
Picardie	Pays de la Loire	Nord-Pas-de-Calais
0.020	-0.018	0.018
Rhône-Alpes	Provence-Alpes-Côte d'Azur	Poitou-Charentes
-0.002	0.023	-0.010

Interprétation des combinaisons linéaires Graphique

Introduction

Étude du lien


Exemple

Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- Vecteurs propres lignes
- Interprétation
- Sans outremer
- ❖ 2ème composante
- Graphique
- Vecteurs propres lignes

❖ Graphique

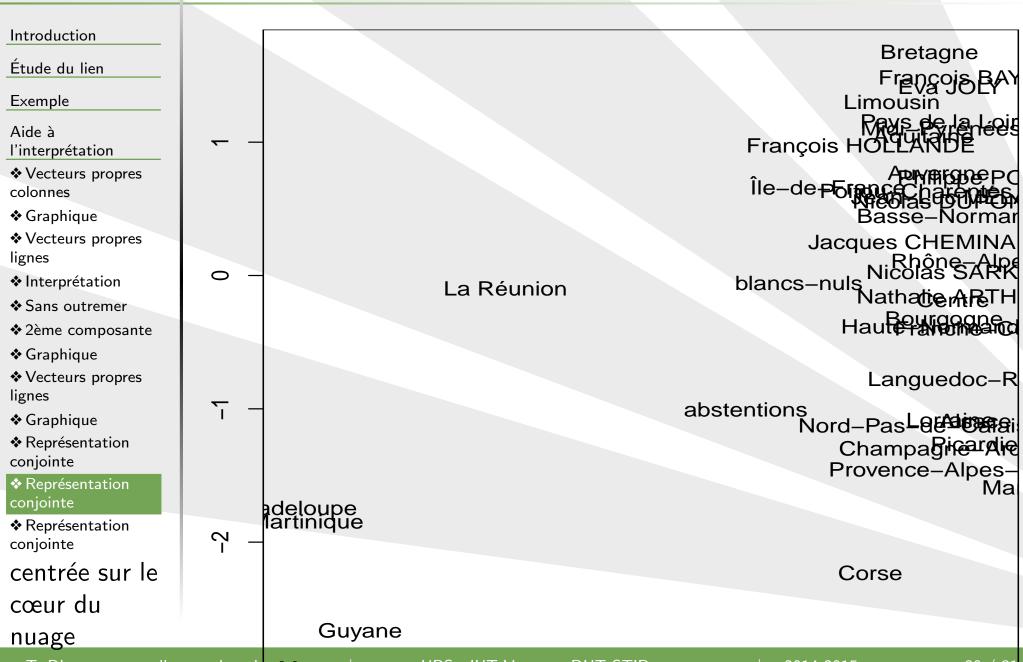
- ❖ Représentation conjointe
- Représentation conjointe
- ❖ Représentation conjointe

Représentation conjointe

Introduction

Étude du lien

Exemple


Aide à l'interprétation

- Vecteurs propres colonnes
- Graphique
- Vecteurs propres lignes
- Interprétation
- ❖ Sans outremer
- ❖ 2ème composante
- **❖** Graphique
- Vecteurs propres lignes
- Graphique
- Représentation
- Représentation conjointe
- Représentation conjointe

- les combinaisons linéaires sont corrélées
- ★ mais pas colinéaires!!!
- on peut proposer une représentation simultanée sur un espace de projection commun

Représentation conjointe

Représentation conjointe

Introduction		Bretagne
Étude du lien		Evangeris BAYROU
Exemple		
Aide à l'interprétation	- -	François HOLLANDE
❖ Vecteurs propres colonnes		Auverg p hilippe POUTOU Île–de–France Poitou–Charantes மூர்கள் Basse–Normandie
❖ Graphique		Basse-Normandie
Vecteurs propres lignes		Jacques CHEMINADE
❖ Interprétation	0 -	blancs-nuls Nicolas SARKOZY
❖ Sans outremer		Nath@lentherTHAUD
❖ 2ème composante		Haute Mariandie Comté
❖ Graphique		
♦ Vecteurs propres		Languedoc-Roussillon
lignes ❖ Graphique	7 -	ntions Navi Day Larreinte aco
❖ Grapmque ❖ Représentation		Nord-Pas-de Le la
conjointe		Provence–Alpes–Côte d'Azur
Représentation conjointe		Marine LE F
❖ Représentation		
conjointe	_2 _	
centrée sur le		Corse
cœur du		
nuage		