

Estimation et tests d'hypothèses

Thierry Dhorne

20 septembre 2016

Rappels

- ❖ État des lieux
- ❖ Plan de conception, de mise en œuvre et de validation d'un test (version classique)
- ❖ Plan de conception, de mise en œuvre et de validation d'un test (version moderne)
- ❖ Rappel : normalisation de la région de décision (approche classique)

Puissance d'un test

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

Rappels

État des lieux

Rappels

♦ État des lieux

- Plan de conception, de mise en œuvre et de validation d'un test (version classique)
- Plan de conception, de mise en œuvre et de validation d'un test (version moderne)
- ❖ Rappel : normalisation de la région de décision (approche classique)

Puissance d'un test

Cas d'une variance inconnue

- quatre situations étudiées
- test sur une probabilité (pas en détail)
- test sur une espérance à variance connue (peu d'intérêt pratique)
- test sur une variance (à connaître parfaitement)
- test sur une espérance à variance inconnue connue (à connaître parfaitement)

Plan de conception, de mise en œuvre et de validation d'un test (version classique)

Rappels

- ❖ État des lieux
- Plan de conception, de mise en œuvre et de validation d'un test (version classique)
- Plan de conception, de mise en œuvre et de validation d'un test (version moderne)
- ❖ Rappel : normalisation de la région de décision (approche classique)

Puissance d'un test

Cas d'une variance inconnue

- 0. spécification du modèle : X(à préciser) $\sim \mathcal{L}(\theta_1, \theta_2,...)$ à définir
- spécification des hypothèses (en fonction des paramètres du modèle)
 - hypothèse nulle : H_O
 - hypothèse alternative H_1
- 2. statistique de test (T : v.a. fonction de l'échantillon) et loi de cette statistique (sous H_0 et sous H_1)
- 3. spécification de la forme des régions de décision et normalisation des régions (risque de 1ère espèce)
- 4. expérimentation, obtention de l'échantillon, calcul de la statistique de test observée t_o
- 5. décision
- 6. éventuellement si $D(H_0)$ calcul de la puissance

Plan de conception, de mise en œuvre et de validation d'un test (version moderne)

Rappels

- ❖ État des lieux
- Plan de conception, de mise en œuvre et de validation d'un test (version classique)
- ❖ Plan de conception, de mise en œuvre et de validation d'un test (version moderne)
- ❖ Rappel : normalisation de la région de décision (approche classique)

Puissance d'un test

Cas d'une variance inconnue

- 0. spécification du modèle : X(à préciser) $\sim \mathcal{L}(\theta_1, \theta_2, ...)$ à définir
- spécification des hypothèses (en fonction des paramètres du modèle)
 - hypothèse nulle : H_O
 - hypothèse alternative H_1
- 2. statistique de test (T : v.a. fonction de l'échantillon) et loi de cette statistique (sous H_0 et sous H_1)
- 3. spécification de la forme des régions de décision
- 4. expérimentation, obtention de l'échantillon, calcul de la statistique de test observée t_o
- 5. calcul de la probabilité critique $\min_{P(D_1)} P_{t_0 \in D_1}$
- 6. décision
- 7. éventuellement si $D(H_0)$ calcul de la puissance

Rappel : normalisation de la région de décision (approche classique)

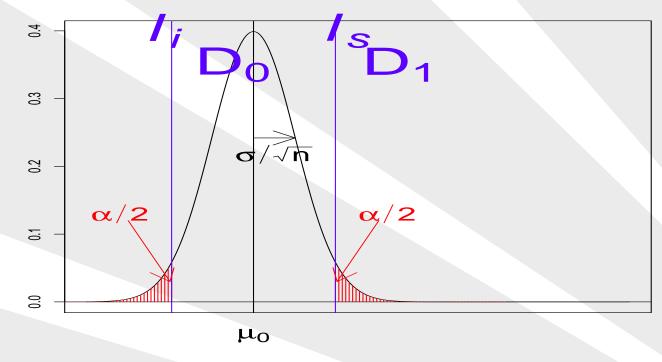
Rappels

- ❖ État des lieux
- Plan de conception, de mise en œuvre et de validation d'un test (version classique)
- Plan de conception, de mise en œuvre et de validation d'un test (version moderne)
- ❖ Rappel : normalisation de la région de décision (approche classique)

Puissance d'un test

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)



la frontière l (en bleu) est telle que

$$P(T > l) = \alpha$$

► donc l est fonction du quantile de proba $1 - \frac{\alpha}{2}$ d'une gaussienne selon

$$l = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}}$$

Rappels

Puissance d'un test

- ❖ Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- ❖ Puissance d'un test : représentation
- Puissance d'un test : représentation
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un
- test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

Puissance d'un test

Risques

Rappels

Puissance d'un test

Risques

- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- ❖ Puissance d'un test : représentation
- Puissance d'un test : contrôle

Cas d'une variance inconnue

- on connait deux risques :
- le risque de 1ère espèce qui est contrôlé lors de la normalisation (version classique) ou lors de la décision (version moderne)
- le risque de 2ème espèce qui est donc contraint par le choix du risque de 1ère espèce
- le risque de 2ème espèce n'est donc pas contrôlé
- il peut être judicieux de le calculer

Intérêt d'une expérience de test

Rappels

Puissance d'un test

- Risques
- Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- ❖ Puissance d'un test : représentation
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

- en général lorsque l'on met en place un test
- \triangleright on souhaite décider H_1 lorsque H_1 est vraie
- exemple : on veut identifier un médicament s'il est actif
- exemple : on veut détecter un déréglage si la machine est déréglée
- \star on souhaite donc que : $P_{H_1}(D(H_1))$ soit élevée
- or $P_{H_1}(D(H_1)) = 1 P_{H_1}(D(H_0)) = 1 \beta$ (risque de deuxième espèce)
- minimiser le risque de deuxième espèce est donc équivalent à maximiser $P_{H_1}(D(H_1))$

Puissance d'un test

Rappels

Puissance d'un test

- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- ❖ Puissance d'un test : représentation
- ❖ Puissance d'un
- test : contrôle
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- ❖ Puissance d'un

test : contrôle

Cas d'une variance

inconnue

Comparaison d'espérances (de moyennes)

Puissance d'un test

La puissance d'un test est sa capacité à détecter H_1 (quand H_1 est vraie), elle est donc égale à :

$$P_{H_1}(D(H_1))$$

elle est donc égale à $1 - P_{H_1}(D(H_0))$, c'est-à-dire à $1 - \beta$ où β est le risque de 2ème espèce.

Puissance d'un test : rappel

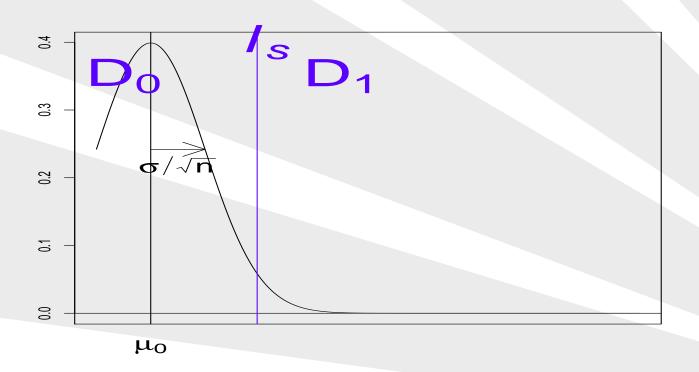
Rappels

Puissance d'un test

- Risques
- Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- Puissance d'un test : représentation
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

- le calcul de la puissance a été réalisé pour le test sur l'espérance à variance connue
- la région de décision est ainsi normalisée (on a « décalé » le graphique)



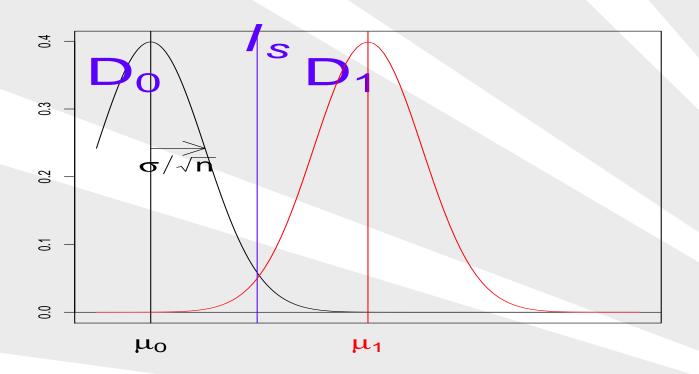
Puissance d'un test : alternative

Rappels

Puissance d'un test

- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- ❖ Puissance d'un test : alternative
- ❖ Puissance d'un test : représentation
- ❖ Puissance d'un test : représentation
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- Cas d'une variance inconnue

- on représente la loi de la statistique de test pour une valeur quelconque de H_1 par exemple μ_1
- la courbe associée est en rouge



Puissance d'un test : représentation

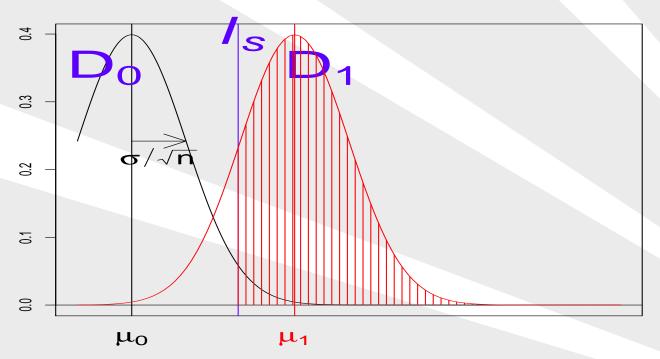
Rappels

Puissance d'un test

- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- Puissance d'un test : représentation
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

- la puissance est la probabilité de décider H1 (= être dans D_1) quand H_1 est vraie (= prendre la loi rouge)
- cette puissance est donc la surface en rouge



qui vaut donc

$$P(\mathcal{N}(\mu_1, \frac{\sigma}{\sqrt{n}}) > l) = 1 - F_{\mu_1, \frac{\sigma}{\sqrt{n}}}(l)$$

Puissance d'un test : représentation

Rappels

Puissance d'un test

- Risques
- Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- ❖ Puissance d'un test : représentation
- Puissance d'un test : représentation
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- ❖ Puissance d'un
- test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes) la puissance vaut donc

$$1 - F_{\mu_{1}, \frac{\sigma}{\sqrt{n}}}(l) = 1 - F_{0,1}(\frac{l - \mu_{1}}{\frac{\sigma}{\sqrt{n}}})$$

$$= 1 - F_{0,1}(\frac{\mu_{0} + \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}} - \mu_{1}}{\frac{\sigma}{\sqrt{n}}})$$

$$= 1 - F_{0,1}(\frac{\mu_{0} - \mu_{1}}{\frac{\sigma}{\sqrt{n}}} + z_{1 - \frac{\alpha}{2}})$$

Rappels

Puissance d'un test

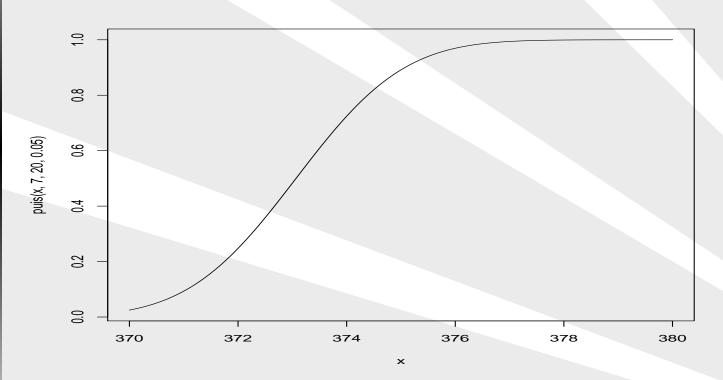
- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- ❖ Puissance d'un test : représentation
- Puissance d'un test : représentation

❖ Puissance d'un test : contrôle

- Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

- la puissance du test dépend
- ightharpoonup de la valeur de l'alternative (μ_1)



- > plus $\mu 1$ s'éloigne de μ_0 plus il est facile de détecter la différence
- pour un déréglage de 5 g, la puissance est 0.8915

Rappels

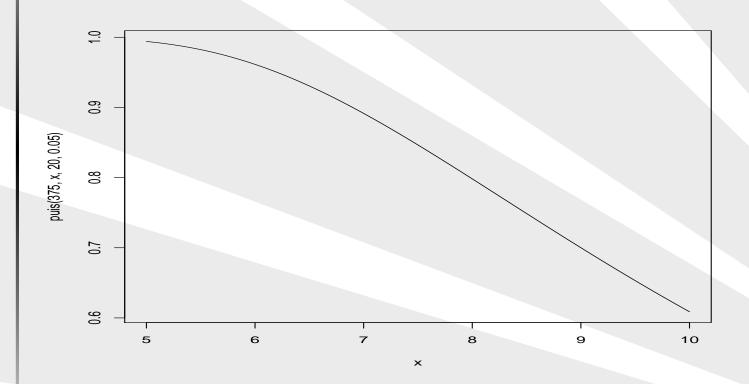
Puissance d'un test

- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- ❖ Puissance d'un test : représentation
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

- la puissance du test dépend
- \rightarrow de la valeur de l'écart-type (σ)



ightharpoonup plus σ augmente plus il est difficile de détecter la différence

Rappels

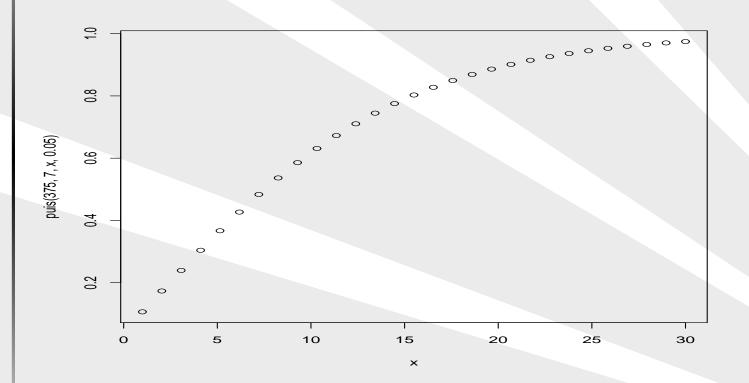
Puissance d'un test

- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- Puissance d'un test : représentation
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

- la puissance du test dépend
- de la taille de l'échantillon n



plus n augmente plus il est facile de détecter la différence

Rappels

Puissance d'un test

- Risques
- ❖ Intérêt d'une expérience de test
- Puissance d'un test
- Puissance d'un test : rappel
- Puissance d'un test : alternative
- Puissance d'un test : représentation
- ❖ Puissance d'un test : représentation
- Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- ❖ Puissance d'un test : contrôle
- Puissance d'un test : contrôle

Cas d'une variance inconnue

- la puissance du test dépend AUSSI
- du risque de première espèce
- mais, en toute rigueur, le risque de première espèce doit être fixé a priori
- ★ on ne devrait donc pas « jouer » avec le risque de première espèce

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Puissance d'un test : cas d'une variance inconnue
- ❖ Limite de décision pour une loi de Student
- Loi dans l'alternative
- ❖ Loi de Student décentrée
- ❖ Calcul de la puissance d'un test de Student

Comparaison d'espérances (de moyennes)

Cas d'une variance inconnue

Puissance d'un test : cas d'une variance inconnue

Rappels

Puissance d'un test

Cas d'une variance inconnue

- ❖ Puissance d'un test : cas d'une variance inconnue
- Limite de décision pour une loi de Student
- Loi dans l'alternative
- Loi de Student décentrée
- Calcul de la puissance d'un test de Student

Comparaison d'espérances (de moyennes)

- le calcul de la puissance a été réalisé pour le test sur l'espérance à variance connue
- on le réalise maintenant lorsque la variance n'est pas connue et qu'on l'estime
- \star on est alors obligé d'utiliser une v.a. centrée (sur μ_0) et pseudo-réduite
- divisée par l'estimateur de son écart-type
- on s'intéresse donc à la loi de

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

• cette quantité suit une loi de Student à n-1 ddl

Limite de décision pour une loi de Student

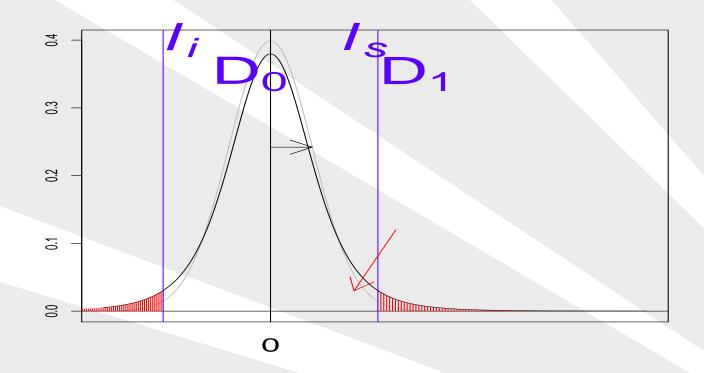
Rappels

Puissance d'un test

Cas d'une variance inconnue

- ❖ Puissance d'un test : cas d'une variance inconnue
- Limite de décision pour une loi de Student
- Loi dans l'alternative
- Loi de Student décentrée
- ❖ Calcul de la puissance d'un test de Student

Comparaison d'espérances (de moyennes)



pour mémoire on représente la gaussienne (en gris)

Loi dans l'alternative

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Puissance d'un test : cas d'une variance inconnue
- ❖ Limite de décision pour une loi de Student
- Loi dans l'alternative
- Loi de Student décentrée
- ❖ Calcul de la puissance d'un test de Student

Comparaison d'espérances (de moyennes)

- lorsque l'on s'intéresse à la loi de la statistique de test sous H_1
- on doit considérer la loi de

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

• quand X est centrée sur μ_1 , cette v.a. n'est plus centrée

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{\bar{X} - \mu_1 + \mu_1 - \mu_0}{\frac{S}{\sqrt{n}}}$$
$$= \frac{\bar{X} - \mu_1}{\frac{S}{\sqrt{n}}} + \frac{\mu_1 - \mu_0}{\frac{S}{\sqrt{n}}}$$

Loi de Student décentrée

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Puissance d'un test : cas d'une variance inconnue
- ❖ Limite de décision pour une loi de Student
- Loi dans l'alternative

❖ Loi de Student décentrée

 Calcul de la puissance d'un test de Student

Comparaison d'espérances (de moyennes) la quantité

$$\frac{\bar{X} - \mu_1}{\frac{S}{\sqrt{n}}} + \frac{\mu_1 - \mu_0}{\frac{S}{\sqrt{n}}}$$

- se décompose en deux termes
- $-\frac{\bar{X}-\mu_1}{\frac{S}{\sqrt{n}}}$ est une v.a. centrée qui suit une loi de Student
- $\frac{\mu_1 \mu_0}{\frac{S}{\sqrt{n}}}$ qui est une v.a. de décentrage appelée δ
- la v.a. précédente est tabulée et est appelée v.a. de Student décentrée de décentrage $\frac{\mu_1 \mu_0}{\frac{S}{\sqrt{n}}}$
- ★ cette v.a. permet de calculer la puissance d'un test de Student.

Calcul de la puissance d'un test de Student

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Puissance d'un test : cas d'une variance inconnue
- Limite de décision pour une loi de Student
- Loi dans l'alternative
- Loi de Student décentrée
- ❖ Calcul de la puissance d'un test de Student

- on peut appliquer le résultat précédent au calcul de la puissance en reprenant un exemple proche du précédent.
- la limite de la région de décision est
- les limites des régions de décision sont pour la gaussienne 1.96 et pour la Student 2.093
- les puissances correspondantes sont pour la gaussienne 0.8757 et pour la Student 0.8396

Rappels

Puissance d'un test

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

Comparaison d'espérances : modèle

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

- on reste dans le cas d'une variable d'étude postulée gaussienne
- le modèle est donc encore gaussien (comme jusqu'ici)
- et l'on suppose qu'il existe deux traitements différents qui agissent sur l'espérance de la variable
- exemple : le rendement pour deux variétés différentes de blé
- exemple : le poids pour deux traitements amaigrissants

Comparaison d'espérances : hypothèses

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

- les hypothèses ne consistent plus à comparer une espérance à une référence
- mais à comparer deux espérances entre elles
- H_O : $\mu_1 = \mu_2$: il n'y a pas d'effet du traitement (de la variété)
- $H_O: \mu_1 \neq \mu_2:$ il y a un effet du traitement (de la variété)
- on peut réécrire ces deux hypothèses sous une forme différente qui les rapproche du cas déjà étudié
- $H_0: \mu_1 \mu_2 = 0$
- $H_O: \mu_1 \mu_2 \neq 0$

Comparaison d'espérances : statistique de test

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

- la statistique de test est (naturellement) un estimateur de $\mu_1 \mu_2$
- ➤ on peut proposer $\bar{X_1} \bar{X_2}$ (moyenne du groupe 1 moyenne du groupe 2)
- si les variances sont les mêmes pour les deux traitements
- la loi de cet estimateur est assez simple
- il s'agit d'une variable aléatoire gaussienne
- d'espérance μ_1 μ_2
- de variance $\frac{1}{n_1} + \frac{1}{n_2}$
- si la variance σ^2 est connue, on est conduit à un test gaussien
- si la variance σ^2 est inconnue, on est conduit à un test de Student

Cas du test de Student

Rappels

Puissance d'un test

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- ❖ Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

- la seule difficulté restante est l'estimation de σ^2 : variance commune aux deux traitements
- il existe deux estimateurs potentiels de σ^2
- l'estimateur construit sur le premier échantillon

$$\frac{1}{n_1 - 1} \sum_{r=1}^{n_1} (X_{1r} - \bar{X_1})^2$$

l'estimateur construit sur le second échantillon

$$\frac{1}{n_2 - 1} \sum_{r=1}^{n_2} (X_{2r} - \bar{X_2})^2$$

il est naturel de chercher à combiner ces deux estimateurs

Estimation optimale de la variance

Rappels

Puissance d'un test

Cas d'une variance inconnue

Comparaison d'espérances (de moyennes)

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

➤ la combinaison la plus pertinente (et optimale) est la moyenne pondérée (par les degrés de liberté) des deux estimateurs précédents

$$\frac{(n_1-1)\frac{1}{n_1-1}\sum_{r=1}^{n_1}(X_{1r}-\bar{X_1})^2+(n_2-1)\frac{1}{n_2-1}\sum_{r=1}^{n_2}(X_{2r}-\bar{X_2})^2}{n_1+n_2-2}$$

Estimateur de σ^2

L'estimateur combiné de la variance pour le test de Student de comparaison de variance est

$$\frac{\sum_{r=1}^{n_1} (X_{1r} - \bar{X}_1)^2 + \sum_{r=1}^{n_2} (X_{2r} - \bar{X}_2)^2}{n_1 + n_2 - 2}$$

Comparaison d'espérances : statistique de test

Rappels

Puissance d'un test

Cas d'une variance inconnue

- Comparaison d'espérances : modèle
- Comparaison d'espérances : hypothèses
- Comparaison d'espérances : statistique de test
- Cas du test de Student
- Estimation optimale de la variance
- Comparaison d'espérances : statistique de test

- la construction des régions de décision est classique
- région de rejet bilatérale extérieure
- la normalisation à peine plus compliquée (voir TD)
- il suffit d'utiliser la statistique de Student